A comparison between extended Floater–Hormann interpolants and trigonometric interpolation
نویسندگان
چکیده
In this note we present a broad comparison between trigonometric interpolation and a specific version of extended Floater–Hormann interpolants which is accurate and stable for the interpolation of periodic functions at equally spaced nodes. The conclusion is that both techniques are equivalent in practice.
منابع مشابه
On the Lebesgue constant of barycentric rational interpolation at equidistant nodes
Recent results reveal that the family of barycentric rational interpolants introduced by Floater and Hormann is very well-suited for the approximation of functions as well as their derivatives, integrals and primitives. Especially in the case of equidistant interpolation nodes, these infinitely smooth interpolants offer a much better choice than their polynomial analogue. A natural and importan...
متن کاملBarycentric rational interpolation at quasi-equidistant nodes
A collection of recent papers reveals that linear barycentric rational interpolation with the weights suggested by Floater and Hormann is a good choice for approximating smooth functions, especially when the interpolation nodes are equidistant. In the latter setting, the Lebesgue constant of this rational interpolation process is known to grow only logarithmically with the number of nodes. But ...
متن کاملBarycentric rational interpolation with no poles and high rates of approximation
It is well known that rational interpolation sometimes gives better approximations than polynomial interpolation, especially for large sequences of points, but it is difficult to control the occurrence of poles. In this paper we propose and study a family of barycentric rational interpolants that have no real poles and arbitrarily high approximation orders on any real interval, regardless of th...
متن کاملA unified, integral construction for coordinates over closed curves
We propose a simple generalization of Shephard’s interpolation to piecewise smooth, convex closed curves that yields a family of boundary interpolants with linear precision. Two instances of this family reduce to previously known interpolants: one based on a generalization of Wachspress coordinates to smooth curves and the other an integral version of mean value coordinates for smooth curves. A...
متن کاملPyramid algorithms for barycentric rational interpolation
We present a new perspective on the Floater–Hormann interpolant. This interpolant is rational of degree (n, d), reproduces polynomials of degree d, and has no real poles. By casting the evaluation of this interpolant as a pyramid algorithm, we first demonstrate a close relation to Neville’s algorithm. We then derive an O(nd) algorithm for computing the barycentric weights of the Floater–Hormann...
متن کامل